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ELENDIF calculates the time evolution of the electron energy distribution function in a mixture of partially ionized gases
with or without an applied electric field. The code can treat inelastic and superelastic processes, electron—electron and
electron—ion collisions, photon—electron (free—free) processes, attachment and recombination, ionization including a distribu-
tion of secondary electrons, and an external source of electrons (e.g. an electron beam). The code also. computes the mean
electron energy, drift velocity, diffusion coefficient, rate coefficients and energy flow rates for the processes being included in

the calculation.
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Title of program: ELENDIF77
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Computer: Cray X-MP; Installation: Lawrence Livermore
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erating system:. VMS

Computer: Sun 3/280; Installation: Lawrence Livermore Na-
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Nature of physical problem

ELENDIF calculates the time evolution of the electron energy
distribution function in a mixture of partially ionized gases
with or without an applied electric field. The code can treat
inelastic and superelastic processes, electron—electron and
electron—ion collisions, photon—-electron (free-free) processes,
attachment and recombination, ionization including a distribu-
tion of secondary electrons, and an external source of electrons
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(e.g. an electron beam). The code also computes the mean
electron energy, drift velocity, diffusion coefficient, rate coeffi-
cients and energy flow rates for the processes being included in
the calculation.

Method of solution

ELENDIF solves the time-dependent Boltzmann transport
equation in terms of the electron number density [1]. By
finite-differencing the electron energy axis, the Boltzmann
equation is transformed into a finite set of coupled differential
equations for the electron number density at each ‘energy grid
as a function of time. The matrix of densities is then evolved
forward in time using a combination of explicit and implicit
methods. The electron energy distribution is then convolved
with the cross sections to provide the transport coefficients,

collisional rates and energy flow rates.

Restrictions on the complexity of the problem

It is assumed in the formulation of ELENDIF that the
two-term spherical harmonic expansion of the electron distri-
bution function is adequate.

Typical running time

On the Vax 8650 the code takes 0.11 seconds per timestep if
the effects of electron—electron collisions are ignored, and 0.46
seconds per timestep if electron—electron collisions are in-
cluded.

Reference
[1] D. Rockwood, Phys. Rev. A 8 (1973) 2348.

LONG WRITE-UP
1. Introduction

ELENDIF calculates the electron energy distribution function in a mixture of partially ionized gases
which may or may not be under the influence of an external electric field. This is done by solving a form of
the Boltzmann transport equation. This problem has a long history. The approach used here. that of
expressing the distribution function as a sum of a spherically symmetric term and a small directional term
as described below, dates back to the work of Lorenz [1] on electron transport in metals. This approach
was applied to electrons in partially ionized gases by Allis in the 1930’s [2] and further developed by
Holstein in 1946 [3]. The application of this formalism, with greatly enhanced utility due to the use of
computers and numerical mathematics, to atoms and molecules with inelastic channels for electron energy
loss was pioneered by Phelps and his collaborators in the 1960°s [4—7]. They solved the Boltzmann
equation as part of the process of obtaining electron impact cross sections by modeling the transport
properties of electron swarms in gases. More recently Rockwood [8] and Elliot and Greene [9] have
developed a finite difference formulation of the Boltzmann equation that is general enough to easily
accomodate many different kinds of collision processes as well as time dependence in the model.
ELENDIF is based on their formulation.

ELENDIF solves a time dependent form of the Boltzmann equation that is derived from the full
transport equation using the first two terms of a spherical harmonic expansion for the velocity distribution
function. The development of the code was initiated at Wayne State University in 1972 as part of research
in modeling energy transfer processes in CO electric discharge lasers [10,11]. Due to the large cross
sections for vibrational excitation by electrons in a discharge, the electron energy distribution is very
highly non-Maxwell-Boltzmann [12]. The evolution of the code continued at the Joint Institute for
Laboratory Astrophysics [13] and at the Lawrence Livermore National Laboratory. Special problems
occuring in the study of discharges [14,15], excimer lasers [16,17] and laser-produced plasmas [18]
necessitated the inclusion of additional physical processes such as electron—electron and electron-ion
collisions, inverse bremsstrahlung, and processes such as ionization and attachment that alter the electron
density. Older versions of the code have been distributed to many academic and research institutions.

Because its development has been associated with a number of diverse applications, ELENDIF
possesses come capabilities which have not been included in the Boltzmann codes [19,20] previously
published in Computer Physics Communications. The code can compute the time evolution of the
distribution function and treat inelastic and superelastic processes, photon—-electron (free—free) processes,
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attachment and recombination, ionization including a distribution of secondaries, and an external source
of electrons such as might be due to ionization by an electron beam. A constant field is assumed, although
it is not difficult to modify the program to treat a time-varying field. The program is applicable to a wide
variety of problems within the limitations of the approximations used to reduce the Boltzmann equation to
a manageable form. The most severe of these is the two term spherical harmonic approximation. In
treating certain classes of molecules, such as polar molecules having rotational cross sections that are very
large in comparison with the elastic cross section, or molecules such as CH4 which has a vibrational cross
section that overlaps a Ramsauer minimum in the elastic cross section, the two term expansion is known to
be inaccurate [21]. The greatest accuracy is obtained in such situations by a multi-term expansion [21-23]
or by a Monte Carlo simulation [24].

For many kinds of problems ELENDIF is self-contained. In some instances, the user may want to
define an initial non-Maxwellian distribution, define the distribution of secondary electrons due to
ionization, include an energy dependent recombination cross section, or define the energy distribution of
an external source of electrons. We have provided the shells of such subprograms in ELENDIF and the
appropriate subprogram calls so that users can tailor aspects of the model to their specific applications. All
of the other processes mentioned above are programmed into ELENDIF and dealt with via the
appropriate flags and cross section lists in the input file.

2. The Boltzmann equation

The general form of the Boltzmann transport equation is

f

(%+U-V,+£m£-vv)f(r, v, t)=(-a—t (1)

where f(r, v, t) is the distribution function for electrons at time ¢ and spatial location r with velocity v. In
the present formulation it is assumed that the electric field is independent of space and time, and the
problem at hand is spatially uniform, so f(r, v, t) = f(v, t). The function f(v, ?) is also expressed in
terms of the two-term spherical harmonic expansion [3]

v
f(o) =fo(v) + 5 A(0v). @
With these assumptions and including only momentum transfer, inelastic and superelastic processes, the

Bolzmann equation can be expressed in terms of the electron number density n(¢) as [8,9]

on 9J;  dJ,
Frinie B_ef - 851 + ?,jN,O[RSj(c+cxj)n(e+ &) —st(()n(e)]

»
)collisions
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n{€) =n.fy(€e)e”?, such that fwn(c) de=n,. (3)
0

Here N = total number density = X (N2 + X ./ N/), with the index s denoting the species and the index j
denoting the state; ¢, = momentum transfer cross section for species s; o,;, €,; = excitation cross section
and energy loss, respectively, for the jth state of species s; 8, = N,/N. The first term in eq. (3) represents
the energy gain by electrons from the electric field. The second term represents the energy loss in elastic
collisions with the heavy species, with a correction term to account for the thermal energy of the heavy
species. The quantity R,;(¢) is the rate at which electrons with energy e produce excitation from the
ground state of species s to excited state j losing energy ¢ ; in the process. The quantity RY;(e) is the rate
at which electrons with energy e gain an energy ¢,; due to superelastic collisions with molecules in state
N/. As it stands, eq. (3) is actually independent of electron density, and in the steady state,

on(e) 4, afy(€) _
o € o %

e
independent of N in the sense that the key parameters become E/N and the fractional composition of the
heavy species.

When processes such as attachment and ionization, which do not conserve the number density of free
electrons, are included in the calculation the distribution function can reach steady state and the LHS of
eq. (3) can still be non-zero. That is,

n(e) 4, an, 1,2 3fo(e)

) —arf () v n a0 ©)
3fo(€) . an(e) on,

o1 =0 does not imply 3 =0 unless 3 =0.

Although the electron density in the Boltzmann calculations is variable, the neutral atom and molecule
densities are not. Modeling of the time evolution of these species generally involves solving a set of
chemical kinetics rate equations. This provision is not included in ELENDIF, although ELENDIF has
been used as a subroutine in a chemical kinetics code to provide electron collision rate coefficients
appropriate to the non-equilibrium chemistry that occurs in discharges [11] and laser-produced plasmas
[18].

3. Inclusion of additional processes in the boltzmann equation
3.1. Rotational processes

Collisional excitation of molecular rotational modes can be included in the Boltzmann equation
explicitly or by use of the “continuous approximation to rotation” (CAR) [4] In this approximation
fo(e+¢;) is expanded in a Taylor series to first order, the Aj= +2 selection rule is invoked, and the
Gerjuoy and Stein [25] Born approximation formulae are used for g; ,,,(¢) to obtain the following
simplification,

N.
Z YVL[(<+ ‘j)(’j,j+2(€ + fj)fo(‘ + ‘j) - “’j,j+2(‘)f0(‘) + (e~ ‘,)‘7,',1—2(‘ _(j)fo(E _fj)
J

d
“5‘7j.j—2(€)fo(€)] = "'Bo"od_€ [‘fo(f)] ,
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Table 1

Parameters, for various molecules, for calculations using the continuous approximation to rotational states

Molecule B, q, ‘A CAR
(V) (eao) (ea})

co 2.43E-4 0.046 1.45E-12

CO, 4.85E-5 3.000 4.10E-4

H, 7.35E-3 0.586 2.37E-3

H,0 1.78E-3 0.730 2.11E-9

N, 2.43E-4 1.040 2.47E-4

0O, 1.78E-4 1.800 5.40E-4

where B, = the rotational constant and

8w
O = ﬁaéq29

with g = electric quadruple moment.

This same approach can be used for the case of rotational excitation via a permanent dipole moment as
shown by Hake and Phelps [6]. Following Luft [26], we defined the CAR parameters for dipole and
quadrupole excitation respectively by

C,=q3B}*107° (10a)
and
C,= q}Boaé% 10'6, (10b)

where the units of the dipole and quadrupole moments and rotational constants are ea, for g,, ea} for g,
and eV for B,. a, is the Bohr radius in cm. One can use the dipole or quadrupole moments and the
rotational constant or the CAR parameter as input to ELENDIF. A list of these parameters, compiled by
Luft [26], for several common molecules is shown in table 1.

The rotational cross section is obtained from the CAR parameter using

Cc,M
CAR kTme’
Q" = ., GRM . ' ' (11)
3.7613 X 10 (— , if the species has a dipole moment.
k

if the species has a quadrupole moment,

1.875
)" mel7s

A difficulty encountered in finite differencing the Boltzmann equation is that Ae should be much smaller
than the smallest energy loss in any inelastic process. This makes it difficult to include processes in which
there is great disparity in the size of the energy quantum; one must use very small Ae. This strains the
capabilities of all but the largest supercomputers. The CAR approach allows us to circumvent this
limitation when rotational processes are included.

3.2. Attachment and recombination

Electron attachment can be properly included in eq. (3) as an inelastic process by retaining the loss term
—R,;(e)n(e), and deleting the gain term R (e + ¢, )n(e+¢, ).
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Electron molecule dissociative recombination is treated similarly when a cross section is available. In
general, recombination data are available only in the form of an electron temperature dependent rate
coefficient. If the recombination rate coefficient, a(cm®/s), is of the form

a=ay(kT,) -,

with kT, in eV and the cross section is assumed to be of form
o=0,(kT,)" .

then one can show that

1578 o 5
G(E)=F—[(—%—)_—q]m(cm ), (12)

with the electron energy e in eV. The special case of g=} corresponds to the a= ag(kT,)™'/? rate
coefficient derived by O’Malley [27]. Note that I'(z) possesses simple poles at z=0, —1, =2, ...,
implying that g cannot take on the values 3, 3, 7, ....

The subroutine RECOMB that treats recombination in ELENDIF must be modified by the user for the
specific problem being modeled.

3.3. Ionization

Secondary electrons due to ionization can be included in the formalism in two ways:
(1) Delta function
All of the secondaries are assumed to enter the distribution with zero energy, thus adding the term [8]

[.a_"_(‘_) =8(5)(%)1/2M°f%°si€1/2n(€) de

at ]joniz.alion of species s €
+N[Ri(e+e)n(e+eq) = Ri(e)n(e)] (132)

to the RHS of eq. (3). The primaries are treated as are any other electrons, undergoing inelastic collisions
with the energy loss equal to the ionization potential, € ;.
(ii) Secondary electrons distributed in energy

If the differential cross section, do,;(€,,€)/de,, for the production of secondary electrons of energy ¢,
by a primary of energy e is available, ionization processes and secondary electrons would be properly
represented on the RHS of eq. (3) by the terms

[ an(e)
at ionization of species s
2 12d0,(e; + e, et e +ey)

V2 e
=(;) ij;l(€+€2+€ﬂ) dc, n(e+e,+e,;)de,

_ (1)1/2]"0'{(:“,.)/261/2 do(e; +eg, €)

s
m A de,

n(e) de

si

172 © do.. (e +¢..
+ (.2_) N® (i/zmn(q) de,. (13b)
m 2e+eg; de
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Note that the second term in this expression reduces to

_(%)l/ston(e)o,a(c) = —NRy()n(e),

where o;(¢) is the total ionization cross section.

The differential cross section daj;(e€,, €)/de, must be written into the function DSIGMA by the user.
Due to the work of Peterson and Green and their collaborators [28~31], such differential cross sections are
available in the form of semi-empirical analytic formulae for a number of atoms and molecules.

3.4. Electron—electron collisions

The terms describing the effect of electron-electron collisions on the distribution function are given by
Rockwood [8] as

LT T N JUE e VZ K. L J0 A (/I W 2 L
(Bt )e_e—a[il/zn +2e de 85(86 25)+ (1/2(86 26) ’ 14
where

€ € © ’
Y (e, t)=3](;n(€') ds'-—-l—j(;e'n(e') de'+2<1/2'/: n(gf/z) de’,

1/2 2 kT. 172
a=%ﬂe4(£) In A, A=<LUZ2 — .
m 2e dmne?

The theory, which involves obtaining 9f,/d¢ due to electron—electron collisions by solving the
Fokker—Planck equation using the Rosenbluth potentials, is described in detail by Shkarofsky et al [32],
Rosenbluth et al [33], Dreicer [34] and by Megill and Cahn [35].

3.5. Electron—ion collisions

Collisions between electrons and ions can be treated by modifying the momentum transfer cross section
in the following manner [36]:

o,(€) = (8,0 —8,:)a.(€) + &, s0. (), (15a)
where

8, . = fraction of species s that are neutral,

8, ; = fraction of species s that are ions,

such that
8 ,+8,,=1
and
et
o (€) =4r— In A. (15b)
€

o,;(¢) is the Coulomb cross section with the maximum impact parameter set equal to the Debye shielding
length [32,37].
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3.6. Photon—electron processes

The free—free interaction between photons and electrons (inverse bremmstrahlung) in the field of
neutral species is included in eq. (3) by use of the relation [38,39]

K.(c)= 8me? [2(e;hv)]1/2(£+hl’/2) Yo ( ) (16a)

3mecw?

for the free—free absorption coefficient (cm’) for photons of energy Av. The terms in eq. (3) are then
FN[-K,(e)n(e) + K, (e = hv)n(e—hv) — K (e)n(e) + K (e + kv)n(e+h»)], (16b)

where F is the photon flux (cm~2 s™!) and the coefficient for stimulated emission, K., is related to the
absorption coefficient by the detailed balance formula

€K (e) =(e—hv)K,(e—hv). (16¢)

These processes are of interest, for example, in laser breakdown problems where the photon flux is large
enough to heat electrons directly via inverse bremsstrahlung,

4. Transport coefficients, rate coefficients and energy balance

Using the distribution function one can compute the electron mean energy,

€=fwf0(c)e3/2 de(eV), a7)
()]
drift velocity,
1(2e\VYE\ ;= 1 df
w=-3(5) (%)} zsa()df‘d‘(m/s) o

and rate coefficients,

k= (k)vzfowa:j(e)f(e)c de(cm3/s), (19)

m

for electron impact processes. Additionally, one can compute the characteristic energy, Dr/p, where
1 =vy/E is the electron mobility and D is the transverse diffusion coefficient

D=2V ()Z;d‘()(mz/s)- (20)

For a Maxwellian energy distribution Dy/p= %é.
One can obtain an energy balance relation by integrating eq. (3) over all energy [8,12]. This gives an
equation with rate of energy gain (from the field, free~free absorption, and superelastic collisions) on one
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side and the rate of energy loss (due to elastic and inelastic collisions) on the other. This equation is, for

fo("t)y

E

N
Vary —

0%ss
5

ky el i, %

ncN+neN28: s—J ar ne%?
$.J

2¢\1/2 ® 2m kT, df,
—(—nT) neNj‘; € gsxﬁso,(e) [f0(5)+ - e de+neN§8&jkv

+(%f—)vzneNFfwKa(e)fo(e)ez de(eV/cm’/s). (21)
()

The 9n./dt term arises because dn(€)/dt can be non-zero even though the distribution function is in
steady state. Thus the integral over energy becomes

= dn(e) _ On, oo 3,2 9 = 1,2
fo 3 ede= % fo fo(e)e de+n’8t.l; fo(e)e? de

on, + 3¢
3 e

=€

(22)

The program also computes the energy loss and momentum transfer collisions frequencies, », and v,
respectively, which have been devised by A.V. Phelps [4] for evaluating the cross section data. These
collision frequencies are defined by:

Yy — vde(E/N)

N D/u—kT 23)
and

Vn €

N N (24)

In practice »,, is sensitive primarily to the momentum transfer cross section and », to the vibrational and
electronic cross sections.

5. Numerical method

If the function n(e, t) is put in finite difference form as a vector n(e;, t) =n,(¢) (i=1, NPTS) on an
NPTS point energy grid, eq. (3) has the general form [8,9]

%—:'=A-n+a(z)-n+c[n(t)] n+ (1), (25)
where A represents the constant matrix of coefficients for the field, elastic, inelastic and superelastic
processes, B represents the matrix of coefficients for a time dependent process (such as recombination), C
represents the matrix of coefficients for processes dependent upon n (such as electron—electron collision),
and Q represents an external source of electrons (such as an electron beam). As pointed out by Rockwood
[8], and Elliot and Greene [9}, this equation can be solved using a combination of implicit and explicit
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methods. The algorithm for this solution is developed as follows:
on(t) _m(e+8t)—n(2)
ot 8t
=A-n(t+8)+B(t)-n(t)+Cln(t)] -n(t+38)+0Q(s),
n(t+8t)=8tA+n(t+8t) +&B(t) - n(t) +8:C[n(2)] n(s+ 8t) + 8:Q(¢) +n(t)
= (1—8tA) 1+ 8:C[n()] *n(+8¢) + (1 — 8A) '+ {[1+8:B(¢)] *n() +5:0(2)},

n(+8)={1-(1- 5:A) " 8:Cn(1)] } - <(1—8:A) " {[1+8:B(r)] n(r) +8:0Q(1)}.
If 8¢ is small, the factor on the RHS involving C is approximately [1 — 8:C] ™! so that
n(t+86)={1=8:C[n(1)]} ' +(1 - 8:A) '+ {[1+ 8B(1)] + () + 8:0(1)}. (26)

In ELENDIF, secondary electrons from ionization, electron depletion due to recombination or attach-
ment, and electron—ion collisions are include in the B array, which is treated explicitly, and electron—elec-
tron collisions are included in the C array. The order of computation goes from right to left. Since C is
tridiagonal, the final operation in the calculation of n(z + 3¢) is the solution of a tridiagonal system. Each
diagonal of the tridiagonal C array is the product of an n, and 7, dependent factor, a constant matrix, and
the vector representing n(e€). Hence the electron—electron collision term is effectively quadratic in electron
density. Details are given by Rockwood [8].
Regarding the choice of 8¢ that allows us to use this approximation, if 8z is chosen such that

max(84;;) <1 foralli, j,

then the matrix (824,;) is nilpotent in a limiting sense in that
(8td;,) >0 asr— co.

In this case the matrix (1 — 8¢A) possesses an inverse such that [40,41]
(1-8:A) ' =1+ (8tA) + (5tA) + - --.

Hence,
1-(1-mA)"'-8:C=1-5C,

dropping the terms having quadratic and higher powers of 8¢.

The matrix A, having dimensions of s ™7, represents the collision frequencies for the flow of electrons up
an down the energy axis due to the electric field and elastic, inelastic and superelastic collisions. As one of
the key assumptions in the use of the first order spherical harmonic expansion of the distribution function
1S Veastic S Vinelastic> the A-matrix should be diagonally dominant. Because the electric field acceleration and
momentum transfer energy loss are treated as continuous processes in the Boltzmann equation, the flow of
electrons along the energy axis due to these processes is written in terms of a current in eq. (3). These
terms, in finite difference form, are given by Rockwood [8] as

APy € Qg y ey + Dp iy — (@ + b )ny, (27)

where

a, ZNt,_2 E\? 1 1\2 +, Ae 5: kTgas_ . 2kTgas R Y
bm}_ 3m (W) u,j/N( )("‘+ )+ (J‘r Tt g )6 @®)
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and
et 1/2 2¢F \1/2 qo(e*)
+ + = k + s+ _ k sUs\k
ef =kAe, vi/N ( p” ) Zs:q:os(ek), v} 2mN(—m ) _/?——Ms .

For use in choosing a value for 3z, these terms are approximately

-1 5 Bl

where € and Ae are in eV, N is the gas density in cm ™3, E/N is in V cm?® and v, is the elastic collision
frequency in s™%.

Having chosen the time step 8¢ for integration of the Boltzmann equation, one needs to estimate the
time needed for the distribution function to relax to a steady state under the influence of electron—electron
collisions. This time is of the order of the electron-electron energy exchange time discussed by Spitzer [37].

He gives this time as

1)2

tg=——7—,
B 445G(L,)
where

v = electron speed (cm/sec),

L= 57("177 such that for a Maxwellian distribution Lv? = ¢/kT,,
e
8me*n, In A
R

m

n, = electron density (cm™?),

In A = Coulomb logarithm,

D(x) - x®’(x)
2

G(x)= .

with ®(x) = erf(x).

Evaluating the constants,

3.24%2
tg= 2 (), (29)
n In AG[(¢/kT,)"]

where € = electron energy (eV). Values of In A and G(x) are tabulated by Spitzer [37].

These implicit computational techniques have been used because of their inherent stability. For the
electron-electron problem restrictions have been imposed upon 8¢ by the approximation used, not by
stability considerations. When electron—electron processes are not being included in the calculation, the
stability characteristics of the implicit scheme allow an arbitrary choice of 8z. It should be noted, however,
that although all choices of 8¢ converge to the same solution, the temporal development of the distribution
function will be represented accurately only for “small” 8z. The integration is not unconditionally stable
when the source term Q(¢), or the term B(¢) (which is how recombination, for instance, is included in the
calculations) are large. These terms are treated explicitly and, consequently, have a stability criterion
associated with their presence in the finite difference equations.
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As a final note, the electron—electron calculation can also be performed explicitly, the algorithm being
n(t+8r) = (1-8A) '+ {1+8B(¢) +8:C[n(2)]} -n(r) +8:0(s). (30)

With this approach there are stability considerations that place a restriction on 8¢ of the form 8 = F[n,
(dn/d¢), (dm, de), Ae] where F is some complicated function of electron density and energy bin size.
However, this stability criterion has not been worked out.

6. Choice of parameters

The choice of time step was discussed in the previous section. The choice of energy bin size and
maximum energy are dictated by several considerations. Normalization and conservation of electrons
requires that fy(eq,,,) <max fy(e), ie. the calculation must be performed into the “tail” of the
distribution. Also, for accuracy in the calculation and in the normalization of the distribution function,
Ae < &, where € is the mean energy. To minimize discretization error, fy(¢;)/fo(€;.,) should be of order
unity. To minimize discretization error with regard to the physical processes being included in the
calculation, we desire Ae <(¢;; represents the excitation energies of the important electron impact
processes in the calculation. Ae should also be small with respect to the energy dependence of the cross
sections for these processes. An example of this latter consideration is the inclusion of vibrational
processes in the calculation. The Ae <C¢;; constraint is particularly important in a time-dependent
calculation in order to conserve electrons.

7. Program structure and subroutines

PARAMETER statements in the main routine and in the subprograms are used to control the
dimensions of the arrays used in ELENDIF. The user may want to modify these dimensions depending on
the amount of computer memory available. These parameters are:

NPTSF the maximum number of points in the finite differenced electron energy distribution function;

NPTSEE the dimension of the arrays used in the electron-electron calculation; must equal NPTSF if
e—e collisions are being treated, but can be set equal to 1 to make the code smaller if e-e
collisions are being neglected;

NSP the maximum number of chemical species that the code can handle;

NLEV the maximum number of states or levels which are allowed for each species.

The entire flow of calculation is controlled from the main program ELENDIF, but the routine responsible
for the matrix calculation of the distribution function is subroutine FDIFF. The flow charts are shown in
figs. 1 and 2.

The input parameters and cross sections are read into program ELENDIF. Details of the input data are
described in a later section. Subroutine QCAR computes the cross section parameter for rotational states
in the continuous approximation described in section 3, if this process is being included. In some cases an
effective rotational cross section with a computationally tractable effective energy loss is used to represent
the effect of the rotational states. ELENDIF then calls FDIFF, which is the main routine for calculating
the distribution function. Once the distribution function is known, subroutine INTGRL normalizes the
distribution function and calculates the mean energy (eq. (17)). The rate coefficients (eq. (19)) for all the
inelastic and superelastic processes are then computed in subroutine RATE. Calculation of the transport
coefficients (eq. (18) and (20) and check of the energy balance (eq. (21)) is done in subroutine ENBAL. In



W.L. Morgan, B.M. Penetrante / ELENDIF: a time-dependent Boltzmann solver for partially ionized plasmas

input Parameters

PROGRAM ELENDIF Cross Sections '

FDIFF

—i MOMNTM

INTGRL

10N2

ENBAL L__II EATTAC l

BPHOTN
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setting up the energy rate balance, ENBAL calls subroutines MOMNTM, ION2, QROT, EATTAC and
BPHOTN. Subroutine MOMNTM interpolates the momentem transfer cross section for use in calculating
the energy gain rate from the external electric field. Subroutine ION2 computes the electron—ion collision
cross section, which is then added to the total momentum transfer cross section, as described in section
3.5. Subroutine QROT computes the cross section for rotational excitation in the continuous approxima-
tion (eq.( 11)). Subroutine EATTAC computes the energy loss due to attachment. Subroutine BPHOTN
calculates the absorption and emission rates for the free—free processes (egs. (16a) and (16c)).

The matrix calculation of the distribution function is managed by subroutine FDIFF. The matrix of
coefficients is calculated by subroutine DCOEFF, which calls subprograms MOMNTM, QROT, QNI and
ACROSS for the collisional cross sections. Function QNI interpolates the inelastic (vibrational and
electronic) cross sections. Function ACROSS is user-provided and is used for cross section evaluation
using analytic formulae. Subroutine PHOTON is called to calculate the terms in the coefficient matrix
relating to free—free processes. Subroutine FINITL provides the initial distribution function, if a
non-Maxwellian is desired. Subroutine DECOM1 does the matrix decomposition. Other processes depend
on the distribution function and will to be updated at each time step. Subroutine IONCOL computes the
electron-ion collision terms. Subroutine RECOMB provides the rate of energy loss versus energy due to
recombination. Subroutine ESEC adds the secondary electrons due to ionization to the distribution. There
are two choices provided: (1) the secondaries are all put into the lowest energy bin, or (2) the secondaries
are distributed along the energy grid using the secondary electron energy spectrum computed in the
user-provided function DSIGMA. Subroutine ESOURC provides the external source of electron, e.g. an
electron beam, if the problem involves such. Subroutine SOLVE1 solves the resulting set of matrix
equations. If electron—electron collisions are included, subroutine EECOL1 computes the matrix used in
the electron—electron calculations, while EECOL2 computes the right hand side for the implicit calcula-
tion. Subroutine TRIDI is used for solving the tridiagonal system of equations resulting from the inclusion
of electron—electron interaction.

Subroutine FDIFF first sets up the matrix calculation by partitioning the electron energy axis into
NPTS cells of width DELTAZ = Ae. The number density of electrons with energy between (k — 1)Ae and
kAe is defined as n,. Equation (25) is then represented as a set of NPTS coupled differential equations.
The matrix of coefficients in eq. (25) is calculated in the subroutines described in the following. The time
evolution of the electron distribution proceeds as given in eq. (26) or (27).

Subroutine DCOEFF calculates the contributions to the A-matrix of eq. (25) due to the field, and the
elastic, inelastic and superelastic processes. The elements of the A-matrix are identified from refs. [8,9],

= - o -
AP = Qe 11 + bty — (ap b )ne+ XN, (st.k+m””k+m,, Ry i)
s.J

- ZMJ(R:j,k”k_R:j.k—m,jnk—mw), (31)
s.J

where a, and b, are given by eq. (28), and R, , = R,;(kAe). The functions R,;(e) and R};(¢) are defined
in egs. (6) and (7). a, is the rate at which electrons in the kth energy cell are promoted to the (k + 1)th
cell, and b, is the rate at which they are demoted to the (k —1)th cell. R, ,, is the rate at which
electrons in the (k + m)th cell are demoted to the kth cell because of inelastic collisions. RY; ,_,, ; is the
rate at which electrons in the (k —m,;)th cell are promoted to the kth cell because of superelastic
collisions. In the calculation of a, and b,, calls are made to subroutine MOMNTM, which interpolates
the momentum transfer cross section data to the defined energy grid points. Calls are also made to
subroutine QROT, which calculates the rotational cross section using eq. (11). The effective momentum
transfer cross section automatically includes the rotational contribution if the CAR parameter is non-zero.
In calculating the inelastic and superelastic terms of A,,, calls are made to function QNI, which
interpolates the vibrational and electronic cross sections.
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Subroutine EECOL1 calculates the C-matrix of eq. (25) when electron-electron collisions are taken into
account. The elements of the C-matrix are identified from refs. [8,9],

, , 'y
ChmMm = Gh—1Mg—1 + biyp1niar — (@i + bp)ny,

where

’ ’ ’__ ’
a, = ZAkjnj’ bk_ EAkjnk)
Jj k
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"‘[(fj“k“%)51:1/12"'(‘/”1‘*“k)“k‘,'_]/z], k=j—1,

0,

k=1 or k=NPTS,

1 0.25

uk=E+ck+0.5Ae'

and « is given in eq. (14).

Subroutine PHOTON computes the contribution to the A-matrix of eq. (25) when photon—electron
processes are taken into account. The terms used in calculating this contribution are easily identified from
eq. (16).

Subroutine ESOURC provides an external source of electrons through the array Q. Subroutine ESEC
provides for secondary electrons from ionization, while subroutine RECOMB provides for electron
depletion due to recombination. These contributions are included in the B-array. Subroutine IONCOL
uses the cross section in eq. (15b) to calculate the contribution to the B-array from electron—ion collisions.

Subprograms ACROSS, DSIGMA, ESOURC, ESEC, FINITL and RECOMB are user provided, and
are described in the next section. We have provided the shells of these subprograms and have included the
appropriate calls so that users can easily adapt the code to their specific application.

8. User provided subroutines for special problems

Calls on the following routines and dummy routines are included in the program:
(a) Subroutine for providing initial distribution function (if non-Maxwellian is desired):

SUBROUTINE FINITL(B,DE,EMAX,EDENS,N)
DIMENSION B(N)

Definitions:

B(i) = n(¢;,¢ = 0) = n,(¢ = 0) = number of electrons/cm’/eV,
DE = energy grid size,

EMAX = maximum energy = N X DE,

EDENS = electron number density n, (cm™3),

N = number of grid points.
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(b) Subroutine for providing external source of electrons, such as might come from an electron beam or
fission fragment ionization of a gas:

SUBROUTINE ESOURC(Q,DE,EMAX,T,N)
DIMENSION Q(N)

Definitions:

Q(i) = Q(¢;) = number of electrons/cm’/eV /s,
DE,EMAX,N = same as before,
T = time (s).

The quantity to be furnished by the user is the spectrum Q(i), the number of electrons/cm®/eV /s at
energy ¢;.

(c) Function for providing secondary electron spectrum (called by subroutine ESEC):
FUNCTION DSIGMA(W,EP,NC,L)
Definitions:

W = energy loss = secondary energy + ionization potential,

EP = primary electron energy,

NC = species index (consistent with data being used in the code),
L = state index.

The unit of the differential cross section DSIGMA, i.e. do,;(e,,€)/de,, is A?/ev,

(d) Function for analytic cross section evaluation (called by function QNI):
FUNCTION ACROSS(E,NC,NL,P1,P2)
Definitions:

E = electron energy (eV),

NC = species index,

NL = state index,

P1,P2 = arbitrary parameters,
ACROSS = cross section (A2).

This function is called for a given species NC and state NL when the number of cross section data points
is equal to one. In this event the data value E(NC,1,NL) and Q(NC,1,NL) may serve as arbitrary
parameters to be used in the formulae being evaluated in ACROSS. The function also passes the electron
energy E for use in the user written formula.

(e) Subroutine for providing rate of electron loss versus energy due to recombination:

SUBROUTINE RECOMB(N,NP1,B,U,USQRT,DT,EDENS,TEL,GDENS)
DIMENSION B(N), U(NP1), USQRT(NP1)

Definitions:

N = number of grid points,
NP1 =N+1,
B = n_(e)(electrons /e’ /eV),
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U = energy (eV); U,,, =i8e = energy of ith grid point,

USQRT = U2,

DT = time step At (s),

EDENS = total electron density (cm™?3),

TEL = reduced mean energy, 2{¢€)/3,

GDENS = gas density (cm™3),

RECRATE = loss rate of electrons from the distribution (electrons/cm’/s/eV),

EREC = energy loss rate due to recombination/product of electron and gas densities (eV cm’/s);
this is used in the energy balance calculation.

Recombination is included in the Boltzmann calculation as a time dependent process represented by
B(¢). Recombination processes fall into three categories:

i) e + X*->X+ Ay, two-body collisional-radiative recombination,
i) e” + X,+~> X + X, dissociative recombination,
iii) e”+ X* +Y-> X + Y, three-body recombination.

A form of recombination cross section that can be derived from an electron temperature dependent rate
coefficient was discussed in a previous section. A review of recombination cross sections and rate
coefficients is given by Biondi [42). For an accurate treatment of recombination 6,.,,,(¢) and an
assumption concerning the ion densities [X*(¢)], [X,+(2)], etc. are required. In the absence of an energy
dependent cross section one could use a rate coefficient and remove electrons from the distribution in the
lowest energy bin. In either case, this calculation is performed explicitly in the Boltzmann code due to the
time dependent ion density.

Subroutine RECOMB must be modified appropriately for different kinds of recombination (radiative,
three-body, etc.) or more than one kind of recombining ion. For example, given «, for dissociative
recombination, the coding to be written into RECOMB would be:

sigma( = 1.5e — 8*alpha0

erec = 0.

do10i=1n
v=15.93e7*usqrt(i + 1)
sigma = sigma0/u(i + 1)
recrate(i) = v *sigma *edens * b(i)
erec = erec + recrate(i) *de

10 continue.

9. Input data description
The sample input data serves as a template for creating other input data files. The sample input file and

the code itself are commented well enough so that the user can modify the structure of the input (e.g. the
cross section data format) to his/her liking. The following briefly describes what the input variables are.

COMENT comment line containing anything.
NCOMP number of chemical species.
NAME(3)
i=1NCOMP name of chemical species.
COMP(i)
i=1NCOMP fractional composition, i.e. mole fraction of species i in the mixture.

VTEMP(i,j) These define the excited state populations so that superelastic effects can be



144 W.L. Morgan, B.M. Penetrante / ELENDIF: a time-dependent Boltzmann solver for partially ionized plasmas

EBYN
TGAS
DT

EPS
PRESS
TEL
EDENS
DNEBDT
FLOOR

IFKEY
IONKEY
IEEKEY
ISMAX
IPRINT
IFPR
IFPL
VTCODE
FION(i)

i =1,NCOMP
DELTAZ
ZMATRX

IDG)i=14

M(ij)
i=1NCOMP
j=15

included in the calculations. The following conventions apply:

vibrational states:

VTEMP(i,j) = vibrational temperature (K) for jth excited state of species i;
electronic states:

VTEMP < 0: abs(VTEMP) is the fractional population of the jth excited state
relative to that of the ground electronic state;

VTEMP > 0: VTEMP is the fractional population of the jth excited state relative to
the total gas density.

E/N in V cm?.

gas temperature in K.

time step size.

distribution function convergence criterion.

gas pressure in atmosphere.

initial electron temperature.

electron density (cm™?).

rate of increase of electron density due to external electron beam.
minimum allowed value of distribution function; this prevents underflow /overflow
in subroutine FDIFF.

= 0: maxwellian initial distribution with electron temperature TEL is used;
=1: user provided initial distribution function (in subroutine FINITL).

= 0: secondary electrons due to ionization not included;

= 1: secondaries are included; also, subroutine RECOMB is called.

= 0: no electron—electron collisions;

= 1: electron—electron collisions included;

= 2: electron—ion collisions also included.

maximum number of time steps.

print interval.

= 0: do not print out distribution function;

=1: print out distribution function.

= 0: do not plot distribution function;

=1: plot distribution function.

= 0: vibrational temperature defined with respect to ground state;

= 1: vibrational temperature defined with respect to next lower state.

fractional ionization for species i.

grid spacing for the energy axis.

maximum energy used in the calculation.
degree of polynomial used in the interpolation of,
i=1, momentum transfer cross section,

i =2, vibrational cross section,

i =3, electronic cross section,

i = 4, distribution function.

1= species index;

j =1: number of vibrational states;

j =2: number of electronic states;

j = 3: number of other states (ionization, etc);
j=4: not used (= 0);

j=15: number of data points for momentum;
transfer cross section.
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Parameters for continuous approximation to rotation:

CROT(,1)
CROT(,2)
KEYR()

OMEGA(,j)
j=12
MV(ij)
j=1,M3,1)
EM(i,k)
QM(ik)

k = 1,M(i,5)
LOGO(,)
ET(j)
MV(ij)
QSCALE
E(i,j,k)

Q(ij.k)
STATWT(j)

= B0 (eV) [If CROT(i,2) = 0 then CROT(,1) is the usual CAR parameter];

= the dipole moment (ea,) or the quadrupole moment (ea}).

= 2 for electron-dipole collisions or

= 4 for electron-quadrupole collisions.

applies only to diatomic molecules;

contains the vibrational constants.

If (M(3,1) <O this input gives the number of data points for the vibrational cross
section of each state.

energy points for momentum transfer cross section.

momentum transfer cross section points (in units of 10~ cm?).
commentary information about the cross section.

energy loss for the jth state of species i.

number of cross section data points.

scale factor for the cross section.

kth energy point for the cross section of the jth state of species i.
kth data point for the cross section of the jth state of species i.
statistical weight ratio or

= —1, attachment,

= +1, ionization with secondary electrons having zero energy,

= +2, ionization with secondaries distributed in energy via function DSIGMA,
=0, none of the above.

There is a provision for making multiple runs of the code allowing E/N, ZMATRX and DELTAZ to
be changed between runs. This is accomplished in the last line of the input data:

EBYN,DELTAZ ZMATRX,JEND

where IEND = 0 terminates the code.
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Fig. 3. Time evolution of the energy distribution function for very-weakly ionized N, at E/N =10 Td, starting from an initial

Maxwellian distribution with a mean energy of 1 eV.
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Fig. 4. Steady-state energy distribution function for partially ionized N, at E/N =10 Td, showing the effects of electron-electron
and electron—ion collisions.

10. Sample run

The test run input data for the sample run included in this paper is for N, at E/N=10Td=1x10""°
V cm?. The energy grid size is chosen to be 0.025 eV, which is much smaller than the lowest vibrational
energy threshold. Instead of using a continuous approximation to rotation, this particular set of N, cross
section data uses an effective rotational cross section with an effective energy threshold of 0.2 eV. The
maximum energy used in the calculation is 5 eV, which goes well into the tail of the energy distribution, as
seen in the test run output. The convergence criterion for a steady-state energy distribution function is
chosen to be 1077, The calculation starts with an initial Maxwellian distribution (the default) with a
temperature of 1 eV. In this sample input data the ionization fraction of the gas is chosen to be small
enough so that electron—electron and electron—ion collisions are negligible. The time evolution of the
energy distribution function is shown in fig. 3. Note how very highly non-Maxwellian the steady-state
energy distribution is due to the large vibrational excitation cross sections. By increasing the electron
density and by setting the flag IEEKEY, the effects of electron—electron and electron—ion collisions can be
studied, as shown in fig. 4. Electron-electron collisions drive the energy distribution towards a Maxwel-
lian, as expected.
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